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ABSTRACT: Recent production of long carbyne chains, concurrent with
advances in the synthesis of pure boron fullerenes and atom-thin layers,
motivates an exploration of possible one-dimensional boron. By means of first-
principles calculations, we find two isomers, two-atom wide ribbon and single-
atom chain, linked by a tension-driven (negative-pressure) transformation. We
explore the stability and unusual properties of both phases, demonstrating
mechanical stiffness on par with the highest-performing known nanomaterials,
and a phase transition between stable 1D metal and an antiferromagnetic
semiconductor, with the phase boundary effectively forming a stretchable 1D
Schottky junction. In addition, the two-phase system can serve as a constant-tension nanospring with a well-calibrated tension
defined by enthalpic balance of the phases. Progress in the synthesis of boron nanostructures suggests that the predicted unusual
behaviors of 1D boron may find powerful applications in nanoscale electronics and/or mechanical devices.

1. INTRODUCTION

Carbon nanostructures have spearheaded a number of advances
in chemistry and materials,1 beginning with fullerenes and
nanotubes.2 More recently, graphene has created a boom of
research.3 Another exotic form of carbon, one-dimensional
chains, also known as carbyne, has been a subject of scientific
controversy since the 1960s, but with the advent of more
powerful synthetic and measuring techniques, it is becoming
more accessible,4,5 and most recently was produced in quantity,
in a stable encapsulated form.6 Meanwhile, boron nanostruc-
tures are being actively investigated. Boron fullerenes were
theoretically proposed,7 and more recently synthesized
experimentally, in a smaller size.8,9 Atomically thin 2D films
have long since been predicted theoretically,10−13 culminating
in recent experimental syntheses.14−19 Evidence for elongated
ribbon-like B4nH2 clusters,

20 tubular B20 clusters,
21,22 as well as

transition metal centered circular boron ribbon clusters23,24

have also been reported.20−24 In the context of this remarkable
progress, one naturally wonders what the structure and
properties of 1D boron nanostructures could eventually look
like, especially because for carbon, the 1D form is expected to
have most extreme properties both mechanically and electroni-
cally.25−28 As we demonstrate in the present first-principles
theoretical study, 1D boron indeed has a fascinating
combination of properties, including a chemomechanics of
tensile strain controlled isomerization,29 a reversible structural
phase transition between metallic and wide-gap semiconducting
forms under tension.

2. COMPUTATIONAL DETAILS
Density functional theory calculations were performed using the VASP
code.30,31 Most calculations used the PBE32,33 exchange-correlation

functional. Where indicated, the HSE06 hybrid functional34,35 was
used to improve the accuracy of structural distortions and associated
band gaps. Projector-augmented wave basis set was used36,37 with a
cutoff of 400 eV. Structural relaxation was performed until all forces
were less than 0.01 eV/Å. At least 10 Å vacuum spacing was
maintained in the nonperiodic directions. Climbing-image nudged
elastic band38 calculations to locate transition states were performed
with five images between initial and final structures. Density-functional
tight binding calculations were done with the DFTB+ code39 using
Slater−Koster parameters from ref 40 at a temperature of 2000 K with
1 fs time step and a 5 ps runtime between sequential 1% engineering
strain increments, with total time approaching ∼1 ns. The model
system contained 64 atoms.

3. RESULTS AND DISCUSSION

3.1. Phases of One-Dimensional Boron. Calculations by
others41 show that, for boron, a carbyne-like linear chain
(henceforth denoted as C) structure has higher energy than a
ribbon-like (R) structure with two staggered atomic rows.
Therefore, the C structure is less stable in tension-free
mechanical equilibrium. However, the two structures have a
2-fold difference in linear density (Figure 1a,d). From this, we
can hypothesize that external tension can stabilize C over R,
using mechanical work to overcome the energy difference. In
this study, we show that this mechanically driven phase
transition is indeed possible, in the sense that (1) it is
energetically preferred to trivial breaking of R; (2) it is
reversible; and (3) it happens on practically useful time scales.
Before discussing these findings in detail, we explore the
remarkably different electronic and mechanical properties of
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Figure 1. Electronic structure of 1D boron ribbons and chains. Ribbons (a) have two nondegenerate Fermi wavevectors (see band structure in b)
stemming from broken π-band symmetry (spatial distributions of corresponding electron densities shown in (c)), which prevents Peierls transition
from opening a band gap. Chains (d) undergo an antiferromagnetic transition with a 4-cell spin density wave (SDW) period (band structure e → f)
with two almost-degenerate solutions: a bond-SDW ground state (g) and a site-SDW 5 meV/atom higher state (h).

Figure 2. Mechanics of one-dimensional boron. (a) Energy−strain curve showing two distinct minima for ribbons (R) and chains (C). The
equilibrium tension Feq is defined as the common tangent for the two minima. The curvature of the plot in the minima yields tensile stiffness of the
phases, and the maximum slope provides an estimate of breaking strength. (b) Bending stiffness of R phase as calculated using a ring model. The “■”
and orange “●” represent the energy and band gap, respectively. The nonlinearities around curvature values result from the degeneracies between
different-symmetry of π orbitals during bending. (c) Ring model calculations for bending stiffness of C phase, with alternating antiferromagnetic
(AFM) and nonmagnetic (NM) ground-state solutions. (d) Twisting of the R phase for torsional stiffness fitting.
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the two phases separately. While we cannot confidently rule out
other 1D structures, our efforts to detect thicker wire-like
phases with triangular or square cross-section (structures can be
found in the Supporting Information) have failed to find any
simple candidate structures with energy lower than that of R.
The phonon dispersion (see the Supporting Information) of
both phases also provides the evidence for the stability of those
1D structures.
3.2. Electronic Structure of Chains and Ribbons. The R

structure is convenient to think of as an infinite extension of
previously observed ribbon-like clusters.20,21 The chemistry of
the latter is analogous to linear carbon with every rhombic B4
unit playing the role of a C2 unit because boron has one-half as
many π electrons per atom.42,43 One might conclude that a
perfectly symmetric R structure must be a metal with half-band
filling in each of the two π bands, which appears to fulfill the
conditions of Peierls theorem44−47 and thus should sponta-
neously tetramerize, as carbyne’s cumulene structure is
predicted to dimerize,48 in the fixed-nuclei approximation.
However, unlike in carbyne, the planar, instead of the axial,
symmetry of R breaks the degeneracy of πx and πy bands
(shown in Figure 1c). As a result, the bands are split, and the
system has two Fermi wavevectors (Figure 1b), neither lying at
Brillouin zone middle, yielding no charge-density waves
(CDW) commensurate with reasonably small-size supercell
and hence the absence of any detectable structural rearrange-
ment.
The C structure (Figure 1d) has one fewer π electron per

atom than carbyne and thus can be interpreted as carbyne with
1/4 band filling (Figure 1e). As a result, one would expect again
a Peierls tetramerization with a π/4a CDW period. Instead,
however, our calculations show the formation of a spin-density
wave (SDW) with almost no atomic rearrangement (Figure 1f).
We identified two stable solutions: a bond-SDW (↑↑↓↓) and
site-SDW (↑•↓•) as shown in Figure 1g,h, respectively, with
the latter 5 meV/atom higher in energy (HSE functional) and
strictly zero bond length alternation due to symmetry, and the
bond-SDW state showing a negligibly weak dimerization. The
band gap of the bond-SDW is 1.52 eV (HSE). As expected for
all similar 1D systems,27 stretching increases the band gap to
1.76 eV at 10% strain, which is appreciable although not as
dramatic as carbyne CDW.25,27 The gap increase here is not
due to electron−phonon coupling27 but rather an increased
SDW amplitude, which grows from 0.25 μB per atom to 0.3 μB
at 10% strain.
3.3. Mechanics of One-Dimensional Boron. The most

basic property of any solid material is its resistance to
deformation. In this section, we calculate the elastic moduli
to demonstrate that R and C phases are true stable materials
with distinct mechanics.
The calculation of tensile stiffness is shown in Figure 2a. As

the unit cell size is scaled, we observed two distinct minima
separated by ΔEc = 1 eV, which is the cohesive energy
difference between the two phases. The curvature of each
minimum defines the tensile stiffness of its corresponding
phase. We calculated the stiffness to be 72 and 46 eV/Å, which
is about 3/4 and 1/2 of that for carbyne, for R and C phases,
respectively. However, the lattice constant of C-boron is about
20% larger than that of carbyne, and the atomic weight is a
further 10% smaller, which brings the specific stiffness of C-
boron to 6.4 × 108 Nm/kg, almost 2/3 of carbyne’s value. At
the same time, the twice-higher linear density of the R phase

makes it the softer one of the two on a per-mass basis (5.2 ×
108 Nm/kg, about one-half of carbyne).
The hill between the two energy minima is the primary direct

evidence of the phase transition. If we start with the R structure
and stretch it to some point on the black curve in Figure 2a
between the minima, for a large sample it will always be
favorable to separate into R and C regions instead of stretching
uniformly, with the total energy being lowered to the green
straight line. The latter is defined as the common tangent of the
two potential wells, and its slope yields the equilibrium tension
Feq = 2.13 nN. This is the value at which both phases have
identical enthalpy, H = E + FL. Above it, R has higher enthalpy
and thus gets converted into C, and vice versa. Under fixed-
length boundary conditions between the two tangent points,
the system will relax toward an R−C mixture in such
proportions that the tension equals Feq. It thus behaves as a
fixed-tension nanospring with a stretching range of about 100%.
By taking the slope of the Figure 2a plot at the inflection

points of energy−strain curves, we can estimate the ideal
breaking strength of the phases, yielding 7.38 and 9.73 nN for
C and R, respectively. These values correspond to 64 × 106 and
44 × 106 Nm/kg specific strength, respectively (85% and 60%
of carbyne). Importantly, Feq is well below both breaking
points.
To calculate the bending stiffness, as before,25 we use rings of

increasing radius (decreasing curvature) to extract the E(1/r2)
asymptote slope, where E is the energy of ring with radius r.
When plotted in respective coordinates, the energy ER of R
“nanobelts” (Figure 2b) shows a strikingly nonlinear behavior.
The upward deviation from the straight line in Figure 2b turns
out to be again rooted in symmetries. Because of the different
spatial distributions of πx and πy bands (Figure 1c), they
strongly differ in susceptibility to curvature. More specifically,
the πy band, which is the lower-energy one for the flat structure,
is much more extended in the direction of curvature, and thus
its energy increases faster with bending, necessarily crossing
over the πx band. This point is marked by the almost-zero
HOMO−LUMO gap of the ring (B44) and an increased
bending stiffness. This behavior repeats at lower curvatures,
perhaps due to “tune-in” of other bands of πy and πy character
with each other. A detailed analysis of ring molecular orbitals is
presented in the Supporting Information. To get an estimate of
the bending stiffness of the infinite R phase, we computed the
stiffness for each value of r based on ring energy ER(r) and the
cohesive energy of the infinite ribbon ER(∞), and took the
lowest value, 2.6 eV Å, which yields a persistence length of 10
nm at room temperature, roughly on par with carbyne.25

The C phase of boron also at first seems to behave extremely
nonlinearly when curved into rings as seen in Figure 2c.
However, the oscillatory behavior is easily understood by
dividing the rings into two families, B8N and B8N+4, with EC(r)
for each perfectly following the predicted asymptotic of ∼1/r2.
This situation is analogous to the first-/second-order Jahn−
Teller effect in carbyne rings.25,49Interestingly, the ground state
of B8N+4 rings is nonmagnetic. The intersection of the two lines
in Figure 2c (around B40) thus can be interpreted as a
“curvature-induced magnetic transition”. The stiffness is 0.81
eV Å for nonmagnetic rings (low-curvature asymptotic) and
1.25 eV Å for antiferromagnetic, the latter corresponding to a
room-temperature persistence length of 4.9 nm.
Finally, the planar symmetry of R structure makes it possible

to define a torsion stiffness without a need for symmetry-
breaking “handles”.25 The model system, illustrated in Figure
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2d, consists of a supercell in which the ribbon makes a 360°
twist. By varying the supercell size, we can calculate the energy
as a function of twist per unit cell and determine the stiffness by
extrapolation, yielding a value of ∼5 eV Å, about 1/2 of the
value for carbyne.
Similarly to previous work on carbyne,25 we can use the

calculated properties to define equivalent continuum elastic
models for both phases. With the cylindrical rod representation
for C-boron, we find a nominal Young’s modulus of YC = 21.6
TPa at a nominal thickness (diameter) of 2rC = 0.66 Å. For
simplicity, we approximate the R phase as a rectangular “plank”
of thickness t and width b = 1.5 Å, and the system of equations
governing the elastic behavior is then
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Figure 3. Ribbon−chain, R ↔ C phase transition. (a) Evolution of tension in molecular dynamics simulations of stretching (including reversal); see
Supporting Videos. (b) Enthalpy variation over sequential steps of R−C phase transition under equilibrium tension. The corresponding structures
are shown with a red “×” marking sequential bond breakings. (c) Domain length (inverse concentration of R|C and C|R interfaces) in 1D boron
under thermal and mechanical equilibrium. (d) Ductility diagram showing contours of phase transition time scales, from (s)econds to (y)ears, as a
function of temperature and tension, assuming nucleation at ribbon ends; that is, the activation barrier used is one-half of the 2.7 eV (b) value. The
inset (e) shows a full-barrier estimate corresponding to “homogeneous” midribbon nucleation of C phase.
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tem yields an effective thickness of t = 0.658 Å, Young’s
modulus of Y = 11.7 TPa, and a shear modulus of G = 8 TPa.
(The corresponding crudely defined Poisson’s ratio is −0.27.)
In sum, while the nominal elastic moduli for 1D boron are
smaller than those for carbyne,25 they are still very high, once
again emphasizing the unusual mechanical properties of one-
dimensional nanomaterials.
3.4. Chain−Ribbon Phase Transition. Having charac-

terized the R and C phases of 1D boron as stand-alone phases
with their own remarkable and very distinct properties, we now
proceed to study the phase transformation that connects them.
To check whether it is at all possible, we first performed a
molecular dynamics simulation of stretching a 64-atom R
supercell with the density-functional tight binding (DFTB)
method. Under such stretching, the system gradually under-
went a smooth transition into the C phase via a series of
nucleation events followed by interface propagation (see
Supporting Video 1). We observed multiple interface
nucleation resulting from the high temperature, as explained
below. Upon collisions of C|R and R|C interfaces as an R
domain shrank, we observed formation of rhomb-shaped
“knots”, which would persist almost to the end of the stretching
run. We also performed a reverse simulation starting from the
structure at 65% elongation (chosen so as to have a fragment of
R phase still intact to serve as a “seed”-nucleus) and gradually
released to contract to original length. The trajectory in
Supporting Video 2 shows growth of R structure at the expense
of C-portion back to the original all-R structure. During both
molecular dynamics runs, we monitored the average tension for
each elongation value (Figure 3a). The stretching run shows an
initial “overstretching” behavior indicative of a nucleation event,
and then remains effectively constant up to full stretching.
Compression is also accompanied by a constant (and somewhat
lower) tension value. The equilibrium tension computed as in
Figure 2a but using DFTB is 2.43 nN, close to the DFT value
and in excellent agreement with the tension value during
molecular dynamics compression.
Our molecular dynamics simulations validate the prediction

of an R−C phase transition in 1D boron under tension, even at
the rather high strain rates and temperatures required imposed
by computational resource limitations. Therefore, it is
compelling to study the phase transition kinetics under more
relevant conditions of lower strain rates and temperatures. With
that aim, we calculated step-by-step energies and activation
barriers for the transformation of R into C using a 24-atom
supercell. The calculations are performed under constant
tension corresponding to phase equilibrium, where the relevant
thermodynamic quantity is the enthalpy H = E + FL. While it is
easy to perform variable-cell geometry relaxations to ensure
exactly the right tension, the problem of locating transition
states becomes much more difficult under constant-tension
boundary conditions. We thus adopted a grid-search approach.
We performed fixed-cell transition state searches (using manual
scan with a suitable choice of reaction coordinate or with the
climbing-image nudged elastic band method, further refined by
the dimer method) with different cell lengths chosen so as to
ensure that the transition states thus located do bracket the
equilibrium tension. The energy (enthalpy) barrier under
equilibrium tension then was determined using interpolation.
This approach enables us to not only compute the kinetics of
phase transition under equilibrium tension, but further to
directly evaluate how the kinetic barriers are affected by loads
above or below equilibrium.

We find that the nucleation of C structure (N1−N2−N3−
N4 in Figure 3b) is limited by the first bond-breaking event
with a 2.7 eV barrier. After that, the enthalpy quickly sets into a
repetitive pattern with a period of 4 and a maximum barrier
height of 0.4 eV within a period, which corresponds to interface
propagation. The periodic behavior can be considered as an
artifact of a finite model system due to electron-counting rules
for bond conjugation,42,43 and in an idealized system with two
semi-infinite phases there would be no such oscillation.
By averaging the energies of states in the propagation part

and dividing by two (number of interfaces in the model
system), we can estimate the free energy (enthalpy) of a single
R|C interface as H* = 1.0 ± 0.07 eV. On the basis of this, we
can evaluate the concentration c of domain interfaces in
mechanical and thermal equilibria as a function of temperature,
so that c−1 ≈ aR exp(H*/kBT). As Figure 3c shows, the
interface energy is large enough that at room temperature one
should expect millimeter-scale coherent phase domains. As the
temperature increases, we gradually enter the conditions where
the system is expected to become a homogeneous mixture of
small nanometer-scale domains, at temperatures above ∼500 K.
This is consistent with multiple nucleation sites seen in the
Supporting Videos.
Finally, from kinetic barriers, we can estimate the speed of

the phase transition. Knowing not only the values of barriers
but also how they react to changes in tension, we can construct
the contour diagram in Figure 3d. The horizontal axis shows
the tension (the left boundary is the equilibrium value of 2.13
nN), the vertical axis shows temperature T, and contours
denote the levels where the frequency of crossing the
nucleation barrier per unit cell length is one per time unit:
(y)ear, (d)ay, (h)our, (m)inute, and (s)econd. The frequency is
estimated as f = 1013 exp[−δH*(F)/kBT] where δH*(F) is the
interpolated activation barrier height at tension F, and the
prefactor is on the order of kBT/h.

51 The mobility of the
interface can be similarly estimated (assuming unilateral
motion) by substituting δH*(F) with the periodic oscillation
barrier ∼0.4 eV and multiplying the resulting frequency by aR.
This yields values on the millimeter-per-second order at 300 K.

4. CONCLUSIONS
The arguments against the possibility of phases in 1D are well-
known. Despite that, our present calculations show that on
practically relevant time- and length-scales boron forms two
well-defined phases, chains and ribbons isomeric forms. The
two phases are linked by a reversible phase transition. The
dynamics of the transition can be tuned over many orders of
magnitude by external tension and temperature. Each isomer by
itself has formidable mechanical properties with different
interesting nonlinearities. Further, one (ribbon) is a true 1D
metal robust against Peierls distortion, and the other (chain) is
a strain-tunable wide-gap antiferromagnetic semiconductor.
Thus, electronically the two-phase system represents a
stretchable Schottky junction, while from the mechanics
standpoint it is a constant-tension spring with a fundamentally
fixed tension value of 2.13 nN. This diversity of behaviors of 1D
boron is certainly remarkable from the fundamental standpoint,
and may lead to interesting novel electromechanical applica-
tions. Although speculating on the synthetic routes of making
1D boron is beyond the scope of the current study, one can
envisage the chains pulled from borophene fragments (similar
to the carbon or BN case26,28,41), or B-chains forming along the
steps of the vicinal substrate surfaces; also, the boron−boron
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coupling reaction52 can be a promising path toward making 1D
boron ribbons or chains. Finally, other chemical compositions
such as silicon were found to also permit R-like structures in
1D,53 and our analysis straightforwardly generalized to all of
these materials as well.
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